Highcharts React Integration Migration Guide

A guide for migrating from highcharts-react-official v3.x to @highcharts/react

Overview

This migration guide covers the transition from the highcharts-react-official
NPM package (v3.x) to the new official @highcharts/react package. The
migration process ensures access to the latest features, improvements, and
official support while maintaining existing chart functionality.

What’s Covered

e Step-by-step migration process

o Breaking changes and how to handle them
e Code examples for common scenarios

e Advanced feature migration strategies

e Troubleshooting common issues

Installation Instructions

Follow these steps to replace highcharts-react-official with @highcharts/react
in your project.

Step 1: Remove the Old Package

npm uninstall highcharts-react-official

Step 2: Install the New Package

npm install @highcharts/react

Step 3: Update Import Statements
Replace all import statements in your React components:

// Before (highcharts-react-official)
import Highcharts from 'highcharts';
import HighchartsReact from 'highcharts-react-official';

// After (@highcharts/react) - Highcharts import no longer required in most cases
import HighchartsReact from 'Ghighcharts/react';

Step 4: Verify Core Dependencies

Ensure you have compatible versions of required dependencies:

npm install highcharts@°12.2.0 react@"18.0.0

Step 5: Clean Build Cache (Recommended)

Clear your build cache to avoid module resolution issues:

For Standard React Projects

Clear npm cache and reinstall node_modules
npm cache clean --force

rm -rf node_modules

npm install

For Vite Projects

Clear npm cache, remove caches, and Teinstall
npm cache clean --force

rm -rf node_modules .vite

npm install

For Next.js Projects

Clear npm cache, remove caches, and reinstall
npm cache clean --force

rm -rf node_modules .next

npm install

Version Requirements

The @highcharts/react package requires Highcharts v12.2 or newer. En-
sure your Highcharts version meets this requirement before migration.

Minimum Requirements

o« Highcharts: v12.2+
e React: v18.0.0+
e Node.js: v14.0.0+

Verification
Check your current Highcharts version:
npm list highcharts

If you need to upgrade Highcharts:

npm install highcharts@latest

Breaking Changes

The migration from highcharts-react-official to @highcharts/react in-
cludes several important changes. Review each change and apply the necessary
updates to your code.

Import Path Changes
Change Required: Update all import statements
// Before

import HighchartsReact from 'highcharts-react-official';

// After - Simplified import, mno Highcharts dependency needed
import HighchartsReact from 'Ghighcharts/react';

Component Props Interface
Change: The highcharts prop is now optional:

// Before (both props required)

<HighchartsReact
highcharts={Highcharts}
options={chartOptions}
ref={chartRef}

/>

// After (only options required)

<HighchartsReact
options={chartOptions}
ref={chartRef}

/>

Module Resolution

Potential Impact: Some bundlers may require configuration updates

If you encounter module resolution issues: 1. Clear your build cache (see
Installation Instructions) 2. Update your bundler configuration to resolve the
new package name 3. Check for any explicit aliases that reference the old package

Code Examples

This section provides before/after examples for common chart scenarios. Each
example shows the minimal changes required for migration.

Example 1: Basic Chart

Before (highcharts-react-official):

import React from 'react';
import Highcharts from 'highcharts';
import HighchartsReact from 'highcharts-react-official';

const BasicChart = () => {
const options = {
title: { text: 'Basic Chart' },
series: [{
data: [1, 2, 3, 4, 5]
H
};

return <HighchartsReact highcharts={Highcharts} options={options} />;
I

After (Ghighcharts/react):

import React from 'react';
import { Chart, Series, Title } from '"@highcharts/react';

const BasicChart = () => {
return (
<Chart>
<Title>Basic Chart</Title>
<Series type="line" data={[1, 2, 3, 4, 5]} />
</Chart>
);
};

Example 2: Multiple Series Chart

Before (highcharts-react-official):

import React from 'react';
import Highcharts from 'highcharts';
import HighchartsReact from 'highcharts-react-official';

const MultiSeriesChart = () => {
const options = {
title: { text: 'Revenue by Quarter' },

xAxis: {
categories: ['Q1l', 'Q2', 'Q3', 'Q4']
},
series: [{
name: '2023',
data: [100, 120, 140, 160]
oA

name: '2024°',
data: [110, 130, 150, 170]
1
};

return <HighchartsReact highcharts={Highcharts} options={options} />;
+;

After (Ghighcharts/react):

import React from 'react';
import { Chart, Series, Title, XAxis } from 'Ghighcharts/react';

const MultiSeriesChart = () => {
return (
<Chart>
<Title>Revenue by Quarter</Title>
<XAxis categories={['Ql', 'Q2', 'Q3', 'Q4'1} />
<Series type="column" data={[100, 120, 140, 160]} options={{ name: "2023" }} />
<Series type="column" data={[110, 130, 150, 170]} options={{ name: "2024" }} />
</Chart>
);
};

Example 3: Chart with Custom Configuration
Before (highcharts-react-official):

import React from 'react';

import Highcharts from 'highcharts';

import HighchartsReact from 'highcharts-react-official';

const CustomChart = () => {
const options = {

chart: {
type: 'area',
backgroundColor: '#f8f9fa'’

1,
title: { text: 'Sales Trend' },
yAxis: {

title: { text: 'Sales ($)' }
},

series: [{
name: 'Sales',
data: [1000, 1200, 1100, 1300, 1500]
H
};

return <HighchartsReact highcharts={Highcharts} options={options} />;
I

After (Ghighcharts/react):

import React from 'react';
import { Chart, Series, Title, YAxis } from 'Ghighcharts/react’;

const CustomChart = () => {

return (
<Chart
options={{
chart: {
backgroundColor: "#f£8f9fa"
}
1>

<Title>Sales Trend</Title>

<YAxis>Sales ($)</YAxis>

<Series
type="area"
data={[1000, 1200, 1100, 1300, 15001}
options={{

name: "Sales"

i3,

/>

</Chart>
);
};

Accessing Highcharts Instance

The new @highcharts/react package provides several ways to access and con-
figure the underlying Highcharts instance

Accessing the Global Highcharts Instance

Before (highcharts-react-official):

import Highcharts from 'highcharts';

import HighchartsReact from 'highcharts-react-official';

// Set global options
Highcharts.setOptions ({
chart: { animation: false }

B

const options = {

title: { text: 'My Chart' },
series: [{
type: 'line',
data: [1, 2, 3, 4, 5]
H
}s

// Use in component
<HighchartsReact highcharts={Highcharts} options={options} />

After (Ghighcharts/react):

import { Chart, Series, Title, Highcharts } from 'Ghighcharts/react';

// Access built-in Highcharts tinstance directly
Highcharts.setOptions({
chart: { animation: false }

B

// Use in component - mo need to pass Highcharts
<Chart>

<Title>My Chart</Title>

<Series type="line" data={[1, 2, 3, 4, 5]} />
</Chart>

Accessing Individual Chart Instances
Before (highcharts-react-official):

import React, { useRef, useEffect } from 'react';
import Highcharts from 'highcharts';
import HighchartsReact from 'highcharts-react-official';

const ChartWithRef = () => {
const chartRef = useRef (null);

const options = {
title: { text: 'Chart with Ref' },
series: [{
type: 'line',
data: [1, 2, 3, 4, 5]
H
};

useEffect(() => {
if (chartRef.current) {
const chart = chartRef.current.chart;

// Access chart methods
chart.reflow();
}
},)

return (
<HighchartsReact
highcharts={Highcharts}
options={options}
ref={chartRef}
/>
)
I

After (Ghighcharts/react):

import type { HighchartsReactRefObject } from 'Ghighcharts/react'’

import React, { useRef, useEffect } from 'react';
import { Chart, Series, Title } from 'Ghighcharts/react';

O =>{
useRef<HighchartsReactRefObject>(null);

const ChartWithRef
const chartRef

useEffect(() => {
if (chartRef.current?.chart) {
// Access chart instance
chartRef.current.chart.reflow();
}
if (chartRef.current?.container) {
// Access container element

console.log('Container:', chartRef.current.container);
}
},)
return (

<Chart ref={chartRef}>
<Title>Chart with Ref</Title>
<Series type="line" data={[1, 2, 3, 4, 5]} />
</Chart>
);
};

Setting Custom Highcharts Instance

For advanced use cases where you need a custom Highcharts build:

Before (highcharts-react-official):

import Highcharts from 'highcharts/highcharts';

import HighchartsReact from 'highcharts-react-official';
import 'highcharts/modules/exporting';

import 'highcharts/modules/accessibility’;

const options = {
title: { text: 'Custom Chart' },
series: [{
type: 'line',
data: [1, 2, 3, 4, 5]
H
};

// Use custom Highcharts instance
<HighchartsReact highcharts={Highcharts} options={options} />

After (Ghighcharts/react):

import { Chart, Series, Title, setHighcharts } from 'Ghighcharts/react';
import Highcharts from 'highcharts/highcharts';

import 'highcharts/modules/exporting';

import 'highcharts/modules/accessibility’;

// Set custom Highcharts tinstance globally
setHighcharts (Highcharts) ;

// All charts will now use your custom instance
export function ChartWithCustomHC() {
return (
<Chart>
<Title>Custom Chart</Title>
<Series type="line" data={[1, 2, 3, 4, 51} />
</Chart>
);

Using Chart Methods and Events
Before (highcharts-react-official):
import Highcharts from 'highcharts';

import HighchartsReact from 'highcharts-react-official';

const options = {
chart: {
events: {

load: function() {
console.log('Chart loaded:', this);
}
}
3,
series: [{
data: [1, 2, 3],
events: {
click: function(e) {
console.log('Series clicked:', e);
}
}
H
};

<HighchartsReact highcharts={Highcharts} options={options} />
After (Ghighcharts/react):

import { Chart, Series } from '@highcharts/react';

<Chart options={{
chart: {
events: {
load: function() {
console.log('Chart loaded:', this);
}
}
}
>
<Series
type="1line"
data={[1, 2, 31}
options={{
events: {
click: function(e) {
console.log('Series clicked:', e);
}
}
i3
/>
</Chart>

Advanced Features

This section covers migration strategies for advanced Highcharts features includ-
ing custom modules, themes, and plugins.

10

Custom Modules and Specialized Charts

The @highcharts/react package provides specialized components for different
chart types:

// Stock Charts
import { StockChart, StockSeries } from 'Ghighcharts/react/Stock';

export function StockExample() {

return (
<StockChart>
<StockSeries
type="candlestick"
data={[
[1609459200000, 100, 110, 90, 105],
[1609545600000, 105, 115, 95, 110],
[1609632000000, 110, 120, 100, 115],
1
/>
</StockChart>
);

}

import { Chart } from 'Ghighcharts/react';
import { VennSeries } from 'Ghighcharts/react/series/Venn';

export function VennExample() {
return (
<Chart>
<VennSeries data={[
{ sets: ['A'], value: 4 },
{ sets: ['B'], value: 1 },
{ sets: ['A', 'B'], value: 1 }
1y />
</Chart>
);
}

import { MapsChart } from 'G@highcharts/react/Maps';
import { MapSeries } from '@highcharts/react/series/Map';

import mapData from 'Ghighcharts/map-collection/custom/scandinavia.geo.json'

export function MapExample() {
return (
<MapsChart
options={{

11

with { type:

chart: { map: mapData }

3
>
<MapSeries
data={[
{ 'hc-key': 'no', value: 1 },
{ 'hc-key': 'dk', value: 2 },
{ 'hc-key': 'se', value: 3 }
1
/>
</MapsChart>

)
}

Server-Side Rendering (SSR)

SSR compatibility can be achieved using dynamic imports or client-side only
components:

// Nexzt.js App Router - Mark component as client-side
'use client';

import { Chart, Series, Title } from 'Ghighcharts/react';

export default function ChartComponent({ data, title }) {
return (
<Chart>
<Title>{title}</Title>
<Series type="line" data={data} />
</Chart>
)
}

// For Pages Router or when dynamic loading is preferred
import dynamic from 'next/dynamic’;

const Chart = dynamic(() => import('./Chart'), {
ssr: false

B

export default function ChartPage({ data, title }) {
return <Chart data={data} title={title} />;
}

Last updated: 2025-10-08

12

	Highcharts React Integration Migration Guide
	Overview
	What’s Covered

	Installation Instructions
	Step 1: Remove the Old Package
	Step 2: Install the New Package
	Step 3: Update Import Statements
	Step 4: Verify Core Dependencies
	Step 5: Clean Build Cache (Recommended)

	Version Requirements
	Minimum Requirements
	Verification

	Breaking Changes
	Import Path Changes
	Component Props Interface
	Module Resolution

	Code Examples
	Example 1: Basic Chart
	Example 2: Multiple Series Chart
	Example 3: Chart with Custom Configuration

	Accessing Highcharts Instance
	Accessing the Global Highcharts Instance
	Accessing Individual Chart Instances
	Setting Custom Highcharts Instance
	Using Chart Methods and Events

	Advanced Features
	Custom Modules and Specialized Charts
	Server-Side Rendering (SSR)

